Is Python worth learning in 2022

Sumeet Shah

  1. Jul 20, 2022
  2. 4 min read

What Is Python Used For? A step-by-step guide for Beginners

What is Python?

Python is a dynamically semantic, interpreted, object-oriented high-level programming language. Python is a general-purpose programming language, which means it can be used for a variety of tasks such as data research, software and web development, automation, and just getting crap done in context. Python's concise, easy-to-learn syntax prioritizes readability, which lowers software maintenance costs. Modules and packages are supported by Python, which fosters program modularity and code reuse. Guido van Rossum created Python, and it was published in 1991.

What is Python used for?

1. Web Development:

Python is a popular choice for complicated web development projects because of its versatility, which allows for the creation of sophisticated online utilities with ease. Web developers that use it save a lot of time and energy because of its straightforward syntax, which is quite comparable to the English language. Python is a very flexible backend language. Backend or server-side functionality can be handled more easily using Python-based web frameworks like Django. Python's prominence in web development is largely due to frameworks and libraries such as Django and Flask, which enhance the language's capabilities.

2. Data Analytics/Data Science:

Python is used to create several of the most popular data mining tools. As a result, it's a fantastic data science tool. Data scientists and analysts alter data using coding languages like Python and R for reporting, predictive analysis, and other purposes. The Pandas library is a major advance forward from the outdated Excel files that have been used for so long for financial research. NumPy also allows you to perform linear algebra, scientific computing, and a variety of other specialized tasks. Python's features enable programmers to distinguish between crucial and relevant data. Organizations may learn more about themselves by interpreting big data well.

3. AI and ML:

These days, artificial intelligence and machine learning are buzzwords, but the fact is that it all boils down to algorithms, code, and logic. Machine learning is the process of teaching computers to learn on their own using algorithms that are continually updated based on incoming data. Python is often regarded as the greatest programming language for Artificial Intelligence (AI) due to its clear syntax and ease of learning. Given the diversity and capability, it's no wonder that some genuinely world-class tools for producing intelligent behavior exist in Python.

4. Financial Analysis:

When recruiting engineers, the most popular programming language considered by FinTech organizations is Python. Python is gaining popularity as a result of its potential financial services. Python's utility in applications such as data regulation, analytics, risk management, and quantitative rate difficulties is the reason for its appeal. More than only FinTech companies use Python programming. Python is widely used everywhere in the financial industry due to its data processing skills and various third-party financial analysis tools.

5. Scripting:

The script language generates code and is very easy to learn, even for newbies. Python is widely used in programming and is an interpreted language that occurs during runtime. It becomes more flexible and adaptable than many other scripting languages since it translates to code. In a program, a script is used to automate particular operations. It can run on its own and requires less code, but modules in Python are referred to as libraries that cannot run on their own. It must be imported before it may be used. Python is classified as a scripting language since it is an interpreted language and its popularity in scripting relates to its simple scripting interface.

Frequently-asked Question

What is Pandas Python?

Pandas is a widely used open-source Python library for data science, data analysis, and machine learning activities. It is developed on top of NumPy, a library that supports multi-dimensional arrays. It provides quick, simple, and adaptable data structures for working with structured (table form, multivariate, possibly heterogeneous) and time-series data. Pandas is a Python data science module. It works well with many other Python data science modules and is normally included in every Python installation. Among other things, Pandas supports re-indexing, repetition, filtering, data analytics, sequences, and representations.

About Author
Sumeet Shah

See What Our Clients Say

Mindgap

Incentius has been a fantastic partner for us. Their strong expertise in technology helped deliver some complex solutions for our customers within challenging timelines. Specific call out to Sujeet and his team who developed custom sales analytics dashboards in SFDC for a SoCal based healthcare diagnostics client of ours. Their professionalism, expertise, and flexibility to adjust to client needs were greatly appreciated. MindGap is excited to continue to work with Incentius and add value to our customers.

Samik Banerjee

Founder & CEO

World at Work

Having worked so closely for half a year on our website project, I wanted to thank Incentius for all your fantastic work and efforts that helped us deliver a truly valuable experience to our WorldatWork members. I am in awe of the skills, passion, patience, and above all, the ownership that you brought to this project every day! I do not say this lightly, but we would not have been able to deliver a flawless product, but for you. I am sure you'll help many organizations and projects as your skills and professionalism are truly amazing.

Shantanu Bayaskar

Senior Project Manager

Gogla

It was a pleasure working with Incentius to build a data collection platform for the off-grid solar sector in India. It is rare to find a team with a combination of good understanding of business as well as great technological know-how. Incentius team has this perfect combination, especially their technical expertise is much appreciated. We had a fantastic time working with their expert team, especially with Amit.

Viraj gada

Gogla

Humblx

Choosing Incentius to work with is one of the decisions we are extremely happy with. It's been a pleasure working with their team. They have been tremendously helpful and efficient through the intense development cycle that we went through recently. The team at Incentius is truly agile and open to a discussion in regards to making tweaks and adding features that may add value to the overall solution. We found them willing to go the extra mile for us and it felt like working with someone who rooted for us to win.

Samir Dayal Singh

CEO Humblx

Transportation & Logistics Consulting Organization

Incentius is very flexible and accommodating to our specific needs as an organization. In a world where approaches and strategies are constantly changing, it is invaluable to have an outsourcer who is able to adjust quickly to shifts in the business environment.

Transportation & Logistics Consulting Organization

Consultant

Mudraksh & McShaw

Incentius was instrumental in bringing the visualization aspect into our investment and trading business. They helped us organize our trading algorithms processing framework, review our backtests and analyze results in an efficient, visual manner.

Priyank Dutt Dwivedi

Mudraksh & McShaw Advisory

Leading Healthcare Consulting Organization

The Incentius resource was highly motivated and developed a complex forecasting model with minimal supervision. He was thorough with quality checks and kept on top of multiple changes.

Leading Healthcare Consulting Organization

Sr. Principal

US Fortune 100 Telecommunications Company

The Incentius resource was highly motivated and developed a complex forecasting model with minimal supervision. He was thorough with quality checks and kept on top of multiple changes.

Incentive Compensation

Sr. Director

Most Read
Generative AI in Data Analytics: Challenges and Benefits

In today's digital era, data is being generated at every turn. Every interaction, transaction, and process creates valuable information, yet transforming this raw data into insights that can drive business decisions remains a significant challenge for many organizations.

Chetan Patel

  1. Nov 22, 2024
  2. 4 min read
Snowflake: A Game-Changer in Cloud Data Warehousing

Snowflake’s cloud data warehousing platform is transforming how businesses manage and analyze their data. With its powerful combination of scalability, efficiency, and affordability, Snowflake empowers organizations to handle large datasets seamlessly. Whether you're working with terabytes or petabytes of data, Snowflake ensures high-performance data processing and analytics, unlocking the full potential of your data.

Vinay Chaudhari

  1. Nov 21, 2024
  2. 4 min read
Building a Simple E-Invoicing Solution with AWS Lambda and Flask

In today’s fast-moving distribution industry, efficiency is everything. Distributors need quick, reliable tools to handle tasks like generating invoices and e-way bills. That’s why we created a serverless e-invoicing solution using AWS Lambda and Flask—keeping things simple, cost-effective, and secure. Here’s how we did it and the benefits it brought to distributors.

Yash Pukale

  1. Nov 13, 2024
  2. 4 min read
Scaling Data Analytics with ClickHouse

In the modern data-driven world, businesses are generating vast amounts of data every second, ranging from web traffic, IoT device telemetry, to transaction logs. Handling this data efficiently and extracting meaningful insights from it is crucial. Traditional databases, often designed for transactional workloads, struggle to manage this sheer volume and complexity of analytical queries.

Kartik Puri

  1. Nov 07, 2024
  2. 4 min read